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The discrete Huygens'modelling is used to simulate the process of the Huygens' principle
in a discrete sense. The method and the modelling were proposed with the demonstration of
possible "elds of applications. In the present paper, an extension is made to the acoustic
problems in which the propagation velocity varies depending on the environment. The two
cases are considered, one is the case when the propagation velocity is dependent on the
location but independent of the propagation direction. This case is demonstrated for the
sound propagation in the ocean. Another is the case when the propagation speed depends on
the direction of the propagation. This case is demonstrated for sound propagation in the
medium with mean #ow.
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1. INTRODUCTION

The discrete Huygens'modelling is a realization of the Huygens' principle in a discrete sense
in which the sequence of the impulse scattering is traced for each minimum distance of
travel. The "eld is modelled here by Cartesian grid meshes made of acoustic tubes crossed at
the connecting nodes in which the scattering occurs. The scattering takes place due to the
impedance discontinuity at the nodes. Alternatively, the "eld is analogously replaced by
grid meshes made of an electrical transmission-line network. The analogy approach has
long been favored by electro-acoustic engineers for which both lumped and distributed
parameter systems have been developed. The transmission-line modelling (TLM) approach
was "rst developed by Johns [1] for electromagnetic "eld analysis, whose ingenuity is to
provide the time domain solution as the results of the impulse responses. We applied the
technique to acoustical systems but without much success due to the lack of computer
capability at that time [2]. Recently, we have developed the approach for the acoustic
problems, which are described in its own terminology without much referring to the
electrical equivalence [3, 4]. This is the reason why we called the approach the discrete
Huygens' modelling. In the present paper, we con"ne ourselves to the acoustic "eld in two
dimension. We discuss two cases. One is the situation in which the propagation velocity is
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Figure 1. Impulse scattering at the element node.
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independent of the propagation direction but dependent on the location. For this
modelling, the element with "ve arms is used, in which the "fth arm is used for varying the
propagation velocity. The example demonstrates the sound wave propagation in the ocean.
Another is the situation in which the velocity depends on the direction of the propagation.
This is modelled by providing a directionally coupled by-pass transmission line that bridges
the "fth arms of two adjacent elements. The example demonstrates the sound wave
propagation in a medium with mean #ow.

2. VARIABLE PROPAGATION VELOCITY

2.1. THE CASE WHEN THE PROPAGATION VELOCITY IS INDEPENDENT OF DIRECTION

A two-dimensional minute wave "eld can be described by a square element (TLM,
transmission-line matrix, line length Dl ) consisting of four acoustic tubes connected at the
center as shown in Figure 1. Each tube or branch has the characteristic impedance
Z

0
"oc

0
, where o is the medium density and c

0
is the propagation velocity in the medium.

The transmission branches connected at the node create a network, which is nothing but
a low-pass wave "lter. The particular feature of the approach is that the sequences of
impulses are traced in time domain. In the element, an input impulse P arriving at branch
1 is scattered at the node to re#ect back to the same branch and to transmit toward other
three branches. This is due to the impedance discontinuity at the connecting node. The
impedance from one branch to the other three branches at the node is Z

0
/3. This means that

the impulse of strength !P/2 is re#ected back to branch 1 and the impulses of strength P/2
are scattered to other branches. The scattered impulses then become the input impulses,
respectively, to adjacent square elements. This process is repeated to create the propagation,
which is what Huygens explained as the mechanism of the propagation of light. These
impulses advance by the distance Dl ("c

T
Dt) for the time step Dt, where c

T
is the propagation

velocity of the wave over the network, that is c
T
"c

0
/J2, where c

0
is the propagation

velocity in the free medium [3]. This algorithm is easily implemented on a computer.
The propagation velocity may be decreased by the introduction of a certain amount of

volume at the node. This can equivalently be made by the introduction of the "fth branch of
length Dl/2 with a proper characteristic impedance Z

5
"Z

0
/g closed at the other end,

which are shown in Figure 2. The variable propagation velocity is now given by

c
T
"S

2

g#4
c
0
. (1)



Figure 2. Element for propagation velocity variation; (a) lumped volume model c: speci"c heat ratio p
0
+p:

ambient pressure <: volume; (b) equivalent closed tube model for the "fth arm (velocity is controlled by the choice
of parameter g); (c) transmission-line expression.
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The velocity varies depending on parameter g chosen, which is the admittance of that
branch measured in terms of Z

0
. This treatment makes not to violate the synchronization of

the impulses. This modelling has already been discussed in our previous paper [3].

2.2. THE CASE WHEN THE PROPAGATION VELOCITY IS DEPENDENT ON DIRECTION

2.1.1. One-dimensional case with variable propagation velocity

In the medium with #ow, the speed of the sound wave propagation is directional. The
speed of the sound propagation going down along the #ow will be the sum of the
propagation speed in the still medium and the speed of the #ow, while the propagation
speed of the sound going up against the #ow will be the propagation speed in the still
medium minus the #ow speed. First, we consider the case without #ow. The
one-dimensional sound "eld is described by the sound waves in an acoustic tube. The
discrete Huygens'model uses a series of the acoustic tube segments of length Dl with a node
at its center as shown in Figure 3, in which impulses pass through the node without
scattering. The relations of the velocity potential

k
/

i
at the node i at time t"kDt

(k"0, 1, 2,2) to the input impulses
k
/n
i

and the output (transmitted, re#ected) impulses

k`1
tn
i
are given by

k
/

i
"

2
+

m/1
k
/m
i
,

k`1
tn

i
"

k
/
i
!

k
/n
i

(n"1, 2), (2)

where superscript n refers to the branch number. The scattering matrix expression of
equation (2) is given by

k`1
C
t1
i

t2
i
D"C

0 1

1 0D
k
C
/1

i
/2

i
D. (3)

It takes time Dt for the impulse to transmit length Dl. The subscript k refers to the number
of the time step. The relation of the input impulse to the output impulse, or the continuity



Figure 3. One-dimensional "eld model.
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condition is

k
/1

i`1
"

k
t2
i
,

k
/2

i~1
"

k
t1
i
. (4)

From equations (2) and (4), one obtains the expression

k`1
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i
!2
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/
i
#

k~1
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i
"

k
/
i`1

!2
k
/
i
#

k
/
i~1

. (5)

This is the "nite di!erence-time domain expression, which can be expanded in Taylor series
about

k
/
i
to give the di!erential expression
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Lt6

!c6
L6/
Lx6B#2H"0, (6)

where the subscripts k and i are ignored as the point of the interest can be taken anywhere in
the ordinate, and c is the transmission speed of the impulse over the network, which is
de"ned by

c"Dl/Dt"c
0
. (7)

This propagation velocity is the same as in free space. Equation (6) corresponds to the wave
equation for / with some higher order error terms

L2/

Lt2
!c2

L2/

Lx2
#error terms"0. (8)

The error term is of the order of O (Dt2).
The variable speed of propagation can be achieved by providing the third branch with the

characteristic impedance Z
3
"Z

0
/g, which is illustrated in Figure 4. For the case of the

variable sound speed, similar relations to equation (2) are given by
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(n"1, 2, 3). (9)



Figure 4. Impulse transmission and scattering.
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The scattering matrix expression is

k`1
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i
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"
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. (10)

The condition of continuity is given by

k
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i`1
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,
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i
,
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/3
i
"
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i
. (11)

From equations (9) and (11), the "nite di!erence expression similar to equation (5) is
obtained as
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The wave equation can then be found to be
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Equation (13) also indicates the wave equation

L2/

Lt2
!

2

g#2
c2

L2/

Lx2
#error terms"0. (14)

The propagation speed is thus given as

c
T
"S

2

g#2
c. (15)

The propagation speed depends on the parameter g (c
T
)c) [3, 4].

2.2.2. Modelling in the medium with mean -ow

The wave equation governing the wave propagation in the medium with mean #ow is
known to be [5]

L2/
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#2v
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!(c2

0
!v2)

L2/

Lx2
"0, (16)

where c
0

is the propagation speed when there is no #ow, and v is the speed of the #ow in the
x direction. The particle velocity u, and the sound pressure p are de"ned as

u"!+/, (17)

p"oA
L/

Lt
#v

L/

LxB . (18)

Here, we consider a model in which impulses scatter from the node into the third branch
which transmit into the third branch of the adjacent element in the downstream without
delay as shown in Figure 5. The scattering expressions for this case are the same as
equations (9) and (10), except for the condition of continuity. For the third branch, it is
di!erent from equation (11), which is

k
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i
. (19)

It should be noted that in the third branches, the scattering and transmission are
uni-directional. From equations (9) and (19), in a similar manner as in the previous case, the
"nite di!erence expression results in
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The "nite di!erence expression expanded in Taylor series lead to the di!erential expression
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Figure 5. Directional link of scattered impulses to the adjacent branch.
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Therefore,

L2/

Lt2
#

g
g#2

c
L2/

Lt Lx
!

2

g#2
c2

L2/

Lx2
# error terms"0. (22)

Comparing with equation (16) gives the relation

c"
g#4

2g#4
c
0
, v"

g
2g#4

c
0
, (23, 24)

where c
0

is the propagation speed without the medium #ow, and v is the velocity of the
medium #ow. The propagation velocity and #ow velocity are depending on the choice of g,
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which cannot independently be adjusted. Equation (22) only requires that the
correspondence between the propagation speed in the space and that in the network should
always be coincident.

2.2.3. ¹wo-dimensional case with mean -ow

The extension to the two-dimensional "eld problems is straightforward. The wave
equation is given by
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in which the mean #ow is only directed along the x-axis. For the propagation speed
variation, the "fth branch is added to a two-dimensional element with four branches. The
"fth branches are now coupled between two adjacent elements in the same way as in the
one-dimensional modelling. The modelling is shown in Figure 6, in which the relation of the
impulses is
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The scattering matrix expression is given by

k`1

t1
i,j

t2
i,j

t3
i,j

t4
i,j

t5
i,j

"

2

g#4

!1!g/2 1 1 1 g
1 !1!g/2 1 1 g
1 1 !1!g/2 1 g
1 1 1 !1!g/2 g
1 1 1 1 !2#g/2

k

/1
i,j

/2
i,j

/3
i,j

/4
i,j

/5
i,j

.

(27)

The condition of continuity is given by
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From them it is easy to obtain the "nite di!erence expression as follows:

(
k`1

/
i,j
!2

k
/
i,j
#

k~1
/
i,j

)#(
k
/

i~1,j
!2

k~1
/
i~1,j

#
k~2

/
i~1,j

)

"

2

g#4
M(

k
/
i`1,j

!2
k
/

i,j
#

k
/
i~1,j

)#(
k~1

/
i,j
!2

k~1
/
i~1,j

#
k~1

/
i~2,j

)

#(
k
/
i,j`1

!2
k
/

i,j
#

k
/
i,j~1

)#(
k~1

/
i~1,j`1

!2
k~1

/
i~1,j

#
k~1

/
i~1,j~1

)N

!

2g
g#4

M(
k
/
i,j~k

/
i~1,j

)!(
k~1

/
i,j
!

k~1
/

i~1,j
)N. (29)



Figure 6. Impulse scattering and transmission in two adjacent elements in two dimension.
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The "nite di!erence expression again leads to the di!erential equation with some error
terms
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Comparing with equation (25) gives the relation
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0
. (31, 32)

3. DEMONSTRATIONS

3.1. THE SOUND PROPAGATION IN THE OCEAN

The distribution of the sound speed in the ocean is depicted in Figure 7, in which some
distinctive modes of propagation are also illustrated [6]. The direction of the sound wave
propagation is likely to bend in the place where the sound speed has gradient. Some
distinctive sound propagation modes include surface channel propagation, SOFAR
channel propagation, bottom bounce propagation and convergence zone propagation.
They sometimes form a shadow zone. The surface channel propagation is the mode in which
sound wave repeats the multiple re#ections just below the surface. This channel is the
sea surface layer of some hundred meters in depth where the temperature is constant under
the surface before it goes down. In this region, sound wave is trapped within the channel as
sound waves directed within a certain angle are propagating re#ectively between the water
surface and the bottom of the channel. The waves other than these are likely to go down
towards the bottom. A shadow zone is created, to which the sound waves less reach.
The sound waves going down are re#ected at the bottom in the sea bed (about 5000 m under
the sea surface), which is the bottom bounce propagation or if the sea is very deep, waves go
back upward before they reach the bottom. The latter waves refractively propagate between
the sea surface and the sea bed, which is the convergence zone propagation. At the depth of
about 1000 m, sound speed reaches the minimum, which creates a layer so-called SOund
Fixing And Ranging (SOFAR) channel. If sound is emitted near the SOFAR channel, the
sound waves are trapped repeating upward and downward refraction. This propagation
mode is called SOFAR channel propagation. The purpose of the present paper is just to
investigate how the present modelling could be applied to demonstrate the distinctive
modes of propagation under such a temperature gradient environment.



Figure 7. The modes of sound propagation in the ocean.

Figure 8. The distribution of temperature and sound speed assumed for the present simulation; (a) the
temperature distribution for Mackenzie's equation (Salinity is assumed to be 3)5% uniform); (b) the distribution of
sound speed evaluated by Mackenzie's equation.
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3.1.1. ¹he relation between temperature and sound speed in the ocean

In the ocean, sound speed not only depends on the temperature but also on the salinity
and the water pressure. Mackenzie's nine-term equation for sound speed variation is
employed here [7]. The sound speed c (m/s) is given by

c"1448)96#4)591¹!5)304]10~2¹2#2)374]10~4¹3#1)340(S!35)

#1)630]10~2D#1)675]10~7D2!1)025]10~2¹(S!35)

!7)139]10~13¹D3, (33)

where ¹ is the temperature (3C), S the salinity (%) and D the depth from the surface (m).
Figure 8 shows the temperature distribution and the corresponding sound speed

evaluated by Mackenzie's equation, in which, positive gradient of sound speed in the surface



Figure 9. Two-dimensional model for simulating SOFAR channel propagation; (a) relative sound speed (Dl/Dt);
(b) all boundaries around the "eld of interest are non-re#ective.
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channel and the presence of the minimum point of sound speed in SOFAR channel are
shown.

3.1.2. SOFAR channel propagation

The SOFAR channel propagation is simulated "rst. This is the mode that appears at the
depth of around 1000 m where sound speed reaches the minimum as shown in Figure 8.
Although the simulation con"nes itself to the two-dimensional space, it is not easy to cover
the whole range of interest, so that, as shown in Figure 9, only the region where the sound
speed varies as the valley-like characteristic is considered. The sound speed is assumed to
change linearly around the minimum point. A single shot sinusoidal wave consisting of the
impulse train of 100 Dt with the amplitude of 200 dB (nonlinear e!ect not included, 0 dB is
referred to 1 kPa) is used for excitation. A line sound source is assumed as shown in
Figure 9 with a certain inclination. A non-re#ective boundary condition is set for all the
boundaries of the "eld of interest. When the sound speed is chosen to be 0)5 Dl/Dt, the
wavelength corresponds to 50 Dl and the source consists of 50 impulses. Figure 10 is the
trace of the sound propagation at 10 000 Dt after the "rst sound emission from the source.
The brightness of the spots depends on the sound intensity at the nodes of the elements.
Sound is seen trapped within a channel between a certain width of 500 Dl repeating upward
and downward refraction around the line where the sound speed is minimum. Snell's law
provides the ray trace of the shortest wavelength limit. The ray is also depicted in the "gure
for comparison. The sound source for Snell's law calculation is assumed to be perpendicular
to the line source. It should be noted that the refraction is responsible for the change of the
direction of sound propagation so that the direction of the sound going down again goes
upward at a certain lower level. The present simulation includes the spill of the sound
waves, in which some broader width of the sound waves is seen. It is, however, surprising
that the classical Snell's law can provide a good estimate for the propagation path.

3.1.3. Surface channel propagation

The surface channel propagation is then investigated. Just under the surface, there exists
the "eld where the positive gradient sound speed distribution turns into the negative
gradient at around 300 Dl. The "eld to be modelled is shown with the sound source in



Figure 10. The trace of the sound propagation after 104 Dt from the "rst sound emission of 200 dB.

Figure 11. Two-dimensional model for simulating surface channel propagation.
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Figure 11 in which the sound speed distribution is also given. For this case, the upper edge
is the water surface, where the re#ection coe$cient is set to be !1 (at z"1) for the free
boundary. A sinusoidal wave consisting of the impulse train of 100 Dt is again used for the
excitation of the line array. Figure 12 shows the trace of the sound propagation at 10 000 Dt
after the sound emission. Sound waves propagate by repeating the re#ection at the surface
and refraction at a certain depth, to create the surface channel. Some waves spill out from
the channel, which are going downward. There is a region to which sound waves less reach
to form the shadow zone.

The sound rays are traced based on Snell's law, which are also depicted in the "gure for
comparison. Two point sound sources, as shown in Figure 13, are used for the ray traces.
Snell's sound ray trace from the sound source r follows the route of the simulated. Snell's
sound ray trace from the sound source s goes downward. From these results, we see that



Figure 12. Simulated example for the surface channel propagation at 104 Dt, where the waves are partly split
downward. Snell's sound rays are also shown for comparison.

Figure 13. The line sound source and the point sources for the ray trace by Snell's law.
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the route of the propagation or the mode of propagation depends on the location and
direction of the sound source.

Snell's law is only valid in the limit of the shortest wavelength. So, the case of the sound
source with shorter wavelength of 20 Dt is then considered. The result at 10 000 Dt is shown
in Figure 14 together with Snell's sound rays, in which the silent regions are more
pronounced.

3.1.4. Convergence zone propagation

Last of all, convergence zone propagation is considered for simulation. This mode of
simulation requires a wider domain of "eld. The distribution of the sound speed and the
location of the sound source are shown in Figure 15. A non-re#ective boundary is again set
except at the sea surface of free boundary. A single shot sinusoidal wave of 20 Dt is used for
the excitation. Figure 16 shows the situation at 17 000 Dt. The sound ray due to Snell's



Figure 14. Same as the case of Figure 10 except for the sound source with shorter wavelength (20 Dt).

Figure 15. The condition of simulation for the convergence zone propagation.
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formula is also depicted. The waves going downward are refracted back upward at around
z"1000 Dl before they reach the bottom. The waves converge near the surface at around
x"2700 Dl, and are then re#ected downward again. This is the convergence zone
propagation. We see the waves that reach the bottom. Some waves also propagate trapped
in the surface channel. For this excitation no wave is trapped in the SOFAR channel.

3.2. SOUND PROPAGATION IN MEAN FLOW FIELD

3.2.1. One-dimensional ,eld

For the validity of the model developed in the previous section, a numerical examination
is carried out. We consider the one-dimensional "eld as shown in Figure 17, in which the



Figure 16. The traces of the wave propagation at 1)7]104 Dt, compared with Snell's sound rays.

Figure 17. One-dimensional "eld with mean #ow in which a source is placed at the center.
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excitation is made at the midpoint of the "eld. The input is a single shot sine wave of the
duration 100 Dt. Mach number M("v/c

0
) of the #ow is chosen to be 0)111 for g"0)5. This

corresponds to the propagation speed c"0)9c
0

and #ow velocity v"0)1c
0
. The wave

propagates toward both directions and the process of the wave propagation is shown in
Figure 18.

3.2.2. Finite di+erence solution

Equation (16) can be solved directly by means of the "nite di!erence scheme of
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N. (34)

The same case as in the previous section is considered. Figure 19 shows the "nite di!erence
solution, in which the potential waveforms are distorted and the amplitudes of the particle
velocity are depressed as the waves travel. When the meshes as "ne as 10 times were used,
the solution is as good as that of our present model. It is found that the present model thus
provides a much better solution than that of the "nite di!erence counterpart for the same
discretization. The examination is extended to various Mach numbers or g. The errors of
the travelled distance for the time required, evaluated at the peak of the wave are shown in
Figure 20. The agreement is reasonable supporting the validity of the modelling.



Figure 18. Wave propagation (c"0)9c
0
, v"0)1c

0
); (a) velocity potential /; (b) particle velocity u.
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Figure 19. Wave propagation (FD-TD scheme: c"0)9c
0
, v"0)1c

0
); (a) velocity potential /; (b) particle velocity u.
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Figure 20. Errors in propagation speed; *h* Huygens' model, )))))))))e))))))))) "nite di!erence (meshes as "ne
as 10 times are used).

Figure 21. Wave propagation under mean #ow; (a) "eld model, one shot sine wave of the duration 40 Dt,
g"1)5, (b) distribution (after 200 Dt).
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Figure 22. Wave propagation under partial mean #ow; (a) "eld model; (b) distribution.
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3.2.3. Sound wave propagation in mean -ow medium2two-dimensional case

Simulation of the sound wave propagation in the medium with uniform mean #ow is
presented here. Figure 21 shows the case when a "eld is excited at the center with a single
shot sine wave of the duration 40 Dt. The "eld model is shown in Figure 21(a) and the
results are illustrated in (b). When the wave propagates down the stream, the wavelength
is enlarged, while it shortens for the wave against the stream. Figure 22 shows
the case of the partial mean #ow. The sound is excited at a point in the #ow region. The
initial propagation is similar to the case of Figure 21, until the wave reaches the boundary
between the #ow and still regions at which it is partially re#ected. The concentric
propagation is recovered in the still region. Figure 23 shows the case when a line
source is placed parallel to the direction of the #ow. The propagation direction is
tilted toward the direction of the downstream. The results thus simulated all look
reasonable.



Figure 23. Sound propagation from a line sound source, g"1)5; (a) "eld model; (b) distributions.
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4. CONCLUDING REMARKS

We presented the elements for modelling the sound wave in variable propagation velocity
environment. The model for the case with mean #ow was proposed in which the scattering
algorithms were also presented. It was also shown that the modelling led to the wave
equation that governed the wave propagation in the medium with mean #ow. Some simple
examples were demonstrated to verify the modelling and their solutions. The present
modelling paves the way to the simulation of some problems, namely the automobile
silencer problem, SODAR problem and ultrasonic #ow-meter problem.

ACKNOWLEDGMENTS

The paper was partly presented at the 16th IMACS 2000 World Congress, Lausanne.
R. Uehara and T. Masuda are acknowledged for their cooperation and help during the
course of the present study.



DISCRETE HUYGENS' MODELLING SIMULATION 439
REFERENCES

1. P. B. JOHNS and R. L. BEURLE 1971 Proceedings of the IEE 118, 1203}1208. Numerical solution of
2-dimensional scattering problems using transmission-line matrix.

2. Y. YOSHII, T. YAMABUCHI and Y. KAGAWA 1976 Spring Meeting Proceedings of the Acoustical
Society of Japan, 421}422. Application of transmission-line matrix (TLM) method to acoustical
problems.

3. Y. KAGAWA, T. TSUCHIYA, B. FUJII and K. FUJIOKA 1998 Journal of Sound and <ibration 218,
419}444. Discrete Huygens' model approach to sound wave propagation.

4. Y. KAGAWA, T. TSUCHIYA, K. FUJIOKA and M. TAKEUCHI 1999 Journal of Sound and<ibration 225,
61}78. Discrete Huygens' model approach to sound wave propagation*reverberation in a room,
sound source identi"cation and tomography in time reversal.

5. M. L. MUNJAL 1987 Acoustics of Ducts and Mu/ers. New York: Wiley-Interscience.
6. The marine acoustics society of Japan 1984 Marine Acoustics, Fundamentals and Applications.

Tokyo: The Marine Acoustics Society of Japan.
7. K. V. MACKENZIE 1981 Journal of the Acoustics Society of America 70, 807}812. Nine-term

equation for sound speed in the ocean.


	1. INTRODUCTION
	Figure 1

	2. VARIABLE PROPAGATION VELOCITY
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6

	3. DEMONSTRATIONS
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13
	Figure 14
	Figure 15
	Figure 16
	Figure 17
	Figure 18
	Figure 19
	Figure 20
	Figure 21
	Figure 22
	Figure 23

	4. CONCLUDING REMARKS
	ACKNOWLEDGMENTS
	REFERENCES

